Production of Multiple Transgenic Yucatan Miniature Pigs Expressing Human Complement Regulatory Factors, Human CD55, CD59, and H-Transferase Genes
نویسندگان
چکیده
The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the generation of transgenic large animals with multiple genetic modifications.
منابع مشابه
A Flowcytometry Study of CD55 and CD59 Expression on Erythrocytes in Rheumatoid Arthritis Patients
Background: Inappropriate activation or blockage of the inhibition of complement system could cause tissue damages in autoimmune diseases particularly rheumatoid arthritis (RA). Defect in complement component regulation may cause damages to tissues, on the other hand, or the damaged tissue might affect the unnecessary activation of complement components. Objective: To investigate the expressi...
متن کاملEfficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xe...
متن کاملComparative analysis of various donor cell types for somatic cell nuclear transfer and its association with apoptosis and senescence.
The aim of the present study was to characterize potential somatic cell nuclear transfer (SCNT) donor cells by comparing two lines of transfected cells with their non‑modified parental controls in culture. Fetal fibroblasts used in the study originated from crossbred Landrace x Yorkshire x Duroc (LYD) or Yucatan mini‑pigs. The LYD fibroblasts were modified by the transfection of a tetracycline ...
متن کاملHuman immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction.
Human immunodeficiency virus type 1 (HIV-1) can be either resistant or sensitive to complement-mediated destruction depending on the host cells. Incorporation of different levels of host cell CD46, CD55 and CD59 may account for this differential sensitivity to complement. However, it has not been determined whether CD46, CD55 and CD59 can all be incorporated at levels which protect virions. To ...
متن کاملExpression of the membrane complement regulatory proteins (CD55 and CD59) in human thymus.
CD59 is one of the key molecules involved in cell protection against autologus complement. The fact that complement regulatory proteins are able to prevent hyperacute rejection of organs in pig to primate model, raises the question of possible complement regulatory protein (CRP) involvement in the maturation of immunological system. We report here that in foetal and postnatal human thymus, CD59...
متن کامل